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EXECUTIVE SUMMARY 

Airspace encounter models capture the complex geometry and behavior of aircraft 
after standard separation assurance has failed. Encounter models are essential to 
unmanned aerial system (UAS) sense and avoid (SAA) system safety evaluation. A 
SAA system with a demonstrated level of safety using extensive simulation and flight 
test evaluations will be required for unmanned aircraft to gain greater access to the 
National Airspace System (NAS). The Department of Homeland Security (DHS) 
strives to operate unmanned aircraft in the littoral regions of the continental United 
States (CONUS), but recent encounter models do not explicitly distinguish littoral 
traffic from other traffic. The framework and data used to build previous airspace 
encounter models for the NAS were used to develop encounter models for the littoral 
regions of the NAS. Since this existing framework was leveraged, the littoral models 
were directly compared to existing models to ensure that they had both sufficient 
data and distinctive characteristics. 

The primary product of this analysis was the development of a littoral correlated and 
uncorrelated model for use in SAA system evaluation. In addition, a methodology 
was developed to determine whether the models were both distinctive from their 
CONUS counterparts and sufficient in terms of the quantity of data used to build 
the models. Application of this methodology demonstrated that both the littoral 
correlated and uncorrelated model characteristics were different than the previous 
CONUS models and that sufficient data were used to build the models. Specifically, 
it was found that aircraft flying under visual flight rules in the littoral environment 
have higher airspeeds and were observed at higher altitudes. Aircraft in littoral 
correlated encounters have higher airspeeds but encounters tend to occur at lower 
altitudes than those in the NAS. Lastly, this analysis determined that although 
the encounter initial conditions tend to be different in a littoral environment, the 
aircraft dynamic behavior, or how the various aircraft states transition during the 
encounter, remains the same. 

Several future needs were identified regarding the airspace encounter model effort 
to support UAS SAA development and certification for current and future DHS 
missions: 

1. Develop and demonstrate a methodology for characterizing the littoral non- 
cooperative density using existing radars. This is a required parameter for 
estimating the expected encounter rate and subsequently estimating the near 
mid-air collision (NMAC) rate—required for a target level of safety safety anal- 
ysis. 

2. Update the littoral model characteristics as the airspace changes. The Fed- 
eral Aviation Administration's Next Generation Air Transportation System 

(NextGen) and the integration of unmanned aerial systems into the NAS will 
likely change both the traffic density and the attributes of the encounter models. 

111 



This will require monitoring the airspace continuously, and releasing updates 
as the model parameters change. 

DHS maritime UASs will likely operate beyond the littoral environment. Thus, 
encounter and density models specific to the oceanic environment should be 
formed. This effort will require additional sensors that have coverage of the de- 
sired operating environment and that extend beyond those used for the CONUS 
and littoral models. 

IV 
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1.    INTRODUCTION 

Airborne safety critical systems must undergo extensive validation under realistic conditions prior 
to certification in the National Airspace System (NAS). Collision avoidance systems for manned 
aircraft, and the associated sense and avoid (SAA) systems for unmanned aerial systems (UASs). 
provide a safety critical function—ensuring separation when other safety layers (e.g., the underlying 
airspace structure, airspace procedures, and air traffic control), have failed to maintain separation. 
These complex systems are assessed in realistic large scale Monte Carlo simulations and flight tests 
to prove that they meet the desired levels of safety. Fundamental to these simulations is the use 
of realistic encounter situations between aircraft which are defined by the relative geometry and 
behavior of the aircraft during the encounter. The geometry and dynamic behavior of aircraft 
during encounters are captured in encounter models that provide a statistically sufficient set of 
features which are estimated from a large collection of observed encounter events. The initial and 
continuing evaluation of the Traffic Alert and Collision Avoidance System (TCAS) for manned 
aircraft illustrates the necessity of encounter models to estimate system effectiveness in a wide 
variety of encounter geometries [1-4]. This system evaluation methodology using encounter models 
for system assessment is required by ICAO when estimating TCAS safety risk [5]. 

There are fundamentally two types of encounters: correlated and uncorrelated. In the first type, at 
least one aircraft in the encounter is receiving air traffic control (ATC) services, and both aircraft are 
transponder equipped. In the second type, ATC services would no longer be provided because either 
one aircraft is not transponder equipped or both aircraft are flying under visual flight rules (VFR). 
The first type is termed "correlated" because there is active coordination provided by ATC prior 
to the loss of separation. It is therefore critical that the model capture this coordination between 
aircraft prior to the loss of separation. In the second type of encounter, a lack of ATC services 
results in uncoordinated loss of separation, hence these encounters are termed "uncorrelated"—i.e., 
aircraft blunder into one another. This uncorrelated feature is exploited by modeling each aircraft 
individually and then simulating the uncoordinated loss of separation. 

Lincoln Laboratory recently built a set of correlated and uncorrelated encounter models for con- 
ventional and unconventional aircraft [6-8]. Unconventional aircraft are defined here as aircraft 
unlikely to carry transponder equipment—e.g., gliders, ultralights, balloons [9]. These models were 
intentionally created for the continental United States (CONUS) from a nearly national coverage of 
radar sensors. Data from these 134 radars, composed of long-range ARSR-4 and short-range ASR- 
8, ASR-9, and ASR-11 radars, were obtained through the U.S. Air Force's 84th Radar Evaluation 
Squadron (RADES) at Hill Air Force Base in Utah. The theoretical horizontal sensor coverage is 
shown in Figure 1—this illustration assumes the sensor specification for detection range without 
terrain masking. The data in the original uncorrelated model were collected during the time periods 
spanning 1-7 December 2007 and 1-7 June 2008 while the data for the correlated model spanned 
December 1, 2007 through August 31, 2008. Although the data to support the uncorrelated model 
were captured over the identical time period as for the correlated model, the data quantity during 
this two week time period was determined to be sufficient. These original encounter models are 
termed the "CONUS" models. 

A SAA system which meets a specified level of safety will be required for consistent and widespread 
UAS operations in the NAS [10].  Encounter models are used to characterize the performance of 



Figure 1. Radar coverage map. 

the SAA system in the expected UAS operational environment. The Department of Homeland 
Security (DHS) has identified the need for UAS operations in the littoral regions of the NAS to 
support the missions of the U.S. Coast Guard and Customs and Boarder Protection [11]. Because 
of this identified UAS need, and the requirement to characterize the airspace for proving SAA 
system effectiveness, an encounter model specific to the littoral regions is desired. 

Although the CONUS encounter models implicitly incorporate the littoral regions of the NAS, they 
do not separate the littoral region explicitly and do not therefore, capture the differences that may 
be expected in the encounter characteristics. For example, it is expected that a littoral model would 
capture terminal traffic when a major airport, or its arrival and departure routes, is located within 
or near the littoral region (e.g., Boston, Los Angeles, Miami). Because of the oceanic proximity of 
these terminal areas, there may be different encounter characteristics than terminal areas residing 
elsewhere. In general, littoral air traffic is expected to be less dense than other CONUS regions 
and have fewer instances of aircraft training and aerobatics. 

The primary objective of this report is to present a methodology for forming correlated and uncor- 
related encounter models specific to the littoral regions of the NAS. These models are created using 
a similar methodology and the data previously obtained and processed into the CONUS models. 
These models will be made publicly available and in a format compatible with the CONUS mod- 
els. Although discrete- and 1200-code (VFR) traffic is observed in the littoral regions, very little 
unconventional aircraft traffic was observed. Hence, the focus of this document is the creation of 
a correlated and uncorrelated conventional model. The uncorrelated model capturing conventional 
(VFR) traffic will be referred to as the uncorrelated model for brevity. Because the data span the 
same duration and the geographic domain remains the same for the littoral and CONUS models, 
a separate description of encounter and traffic density is unneeded. 

Before describing the approach for building the models, a definition of the littoral regions is required. 
The Department of Defense (DoD) defines the littoral environment as follows [12]. 



The littoral comprises two segments of operational environment: 

1. Seaward: the area from the open ocean to the shore, which must be controlled to 
support operations ashore. 

2. Landward:  the area inland from the shore that can be supported and defended 
directly from the sea. 

Because this model is primarily intended for use when developing and certifying UAS deployed to 
support the DHS maritime mission, the littoral environment is broadly defined as the area from 
the U.S. coastline oceanward to international waters (approximately 200NM from the coastline). 

1.1    DOCUMENT OVERVIEW 

This report describes the process for modifying the existing CONUS encounter models to reflect 
the littoral airspace. This document does not describe the complete process for processing the 
radar data into the encounter models, but the process is identical to that described in the reports 
detailing the CONUS models. This document also assumes that the reader is familiar with the 
process for creating and subsequently using the encounter models. For a brief, high level discussion 
of the models, refer to [13-15]. The main text of this document does not discuss Bayesian networks, 
although Appendix E is included to describe the associated nomenclature. 

Section 2 first presents the approach for filtering the radar data to extract littoral data. This 
section then presents the methodology for comparing the CONUS model to the littoral model and 
to confirm the distinct use of the littoral models. It concludes with a discussion on determining 
the sufficiency of the data collected by presenting metrics for model convergence. 

Sections 3 and 4 describe the models that were generated and then carries out the model compar- 
ison and model convergence methodology of Section 2 for the uncorrelated and correlated models, 
respectively. The candidate model structures, graphically representing the conditional dependences 
between the model variables, are presented in Appendix D. 
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2.    APPROACH 

This section describes the methodology for determining which observed aircraft tracks and en- 
counters are considered littoral. The section subsequently discusses the selected procedure for 
quantitatively comparing the CONUS and littoral models and for determining that sufficient data 
were used to build the models. 

2.1 LITTORAL SPATIAL FILTERING 

The littoral environment is defined in Section 1.1 as the airspace extending from the coastline to 
international waters. Two slight modifications were made to this definition when filtering tracks 
and encounters for the models. First, a small buffer, corresponding to 1.67-10~2 deg of latitude and 
longitude (approximately 1 NM) was added to the coastline in order to remove portions of tracks 
that transit small inlets (less than 2NM wide) along the coast, including bays with small inlets— 
e.g., San Fransisco Bay. Second, no specific limit was placed in the distance from the coastline. 
Although no specific limit was placed on the distance from the coastline, there is a realistic limitation 
provided by the maximum range of the sensors. For long-range Air Route Surveillance Radars 
(ARSR-4) surrounding the edge of the CONUS, the maximum range specification for primary 
and secondary (beacon) surveillance is approximately 250 NM. Encounters have been observed out 
to approximately 450 NM at an altitude of 35,000ft with secondary surveillance, although this 
relatively long 450 NM range does not extend to sea level. 

The World Vector Shoreline Plus coastline product from the National Imagery and Mapping Agency 
was used to identify the coastline [16]. The highest resolution 1:250,000 scale source specification 
requires that 90 percent of all identifiable shoreline features be located within 500 meters. Oceanic- 
islands, including the Caribbean islands, were classified as littoral. To create the buffer zone as 
described above, the 1:12,000,000 scale product was used to reduce computation time, and the 
buffer was created such that all coastal points were at least 1 NM from the buffer. An illustration 
of the coastline data with the buffer is shown in Figure 2. Once filtered with the littoral boundary, 
the remaining tracks are processed into the encounter models. Tracks with littoral duration less 
than 30s were also removed from processing. After filtering, 10% of encounters and 3.8% of 1200- 
code flight hours passed the filter criteria—corresponding to 40,985 encounters and 2049 1200-code 
flight hours, respectively. Because of the relatively small data set used to build the littoral models 
when compared to the CONUS models, the question of whether adequate data were included 
within the model arises. It should be noted that although only 10% of encounters were classifed 
as littoral, these 40,985 encounters represent an order of magnitude increase in the number of 
encounter over previous models [17-22]. The process for determining this adequacy, in terms of the 
model convegerence, will be discused in the following section. 

2.2 MODEL CONVERGENCE 

After spatial filtering to determine which encounters and 1200-code tracks are in the littoral envi- 
ronment, the littoral models must make use of a significantly smaller data set than was used for 



i:i 

bC 
0) 

— r 

— 

12 

Buffer 
- Coastline 

"^h 

^^-v. 

!l 
j 

\ 
y'^ '-' 1 

V 

'1.5 -70.5 

Longitude (deg) 

-69.5 

Figure 2. Littoral buffer for the Eastern Coast of Massachusetts. The littoral buffer was implemented to 
remove tracks transiting small coastal inlets and bays. The coastline is the 1:250,000 product while the buffer 
was created using the 1:12,000,000 scale product. 

the CONUS models. Therefore, in addition to comparing the littoral and CONUS models to deter- 
mine if they are similar, it must be determined that there are sufficient data in the littoral model. 
This is determined by comparing the convergence of (1) the parameters in the model and (2) the 
probability that an encounter leads to a near mid-air collision (NMAC) as data are added to the 
model. The F(nmac | enc) is the primary characteristic that is used to determine the effectiveness 
of a collision avoidance system using the encounter models, and it is therefore critical that this 
value converges. 

In general, the convergence process is accomplished by adding fixed quantities of data (subsets 
of the total data set) and monitoring the convergence of the key parameters. There is not a 
quantitative metric for unequivocally concluding that the necessary metric converged. Thus, the 
convergence parameters are presented against those for the CONUS model and then discussed. 
This presentation of the convergence is sometimes termed the convergence curve. It is assumed 
that the parameters for the CONUS model converged, so direct comparison is made. The full data 
was split up into 32 approximately equal subsets for the convergence process. These individual 
subsets are denoted with superscript t while the cumulative sum of the data from the first subset 
through to subset t is denoted the (larger) data subset T. 

2.2.1     Model Parameter Convergence 

The first convergence metric is formed from the individual parameters that make up the Bayesian 
network—6^ = P(Xi = k \ 7Ty).  Note that the nomenclature as defined in Appendix E is used 



in this section. Using a metric that is dependent on the model parameters makes the metric in- 
dependent of the model implementation—in this case, the simulation methodology. When these 
parameters converge, the many probability distributions that make up the model necessarily con- 
verge. The discrepancy between the parameters as additional data subsets are added is simply the 
difference between the parameters: 9j^k — 9^k . Although this discrepancy may be used directly 
to determine the model convergence, there are instances when the discrepancy may be skewed. 
This occurs when the probability of a parental instantiation is low. For example, if a certain in- 
stantiation of the parents only occurs once in the data, then the change in the parameters given 
that instantiation would be large even though the probability of the parental instantiation is low. 
Hence, the joint probability of the variable and the parental instantiation, which weights each of 
the parameters by the probability of the parental instantiation, is used to determine convergence: 

4>ijk = P(Xi,Xij) = P(xi | nl])P(iTl]) = -S- , (1) 

where Ni is the number of data points for variable i. Note that the actual parameters of the model 
are computed by normalizing each individual count by the number of counts for each parental 
instantiation—Nijk/N^. Since the models are composed of complete data (data without missing 
variables), then Ni is equivalent to the total number of data points (N) used for building the model. 
Since there are many parental instantiations, and thus many thousands of parameters, the mean 
of the difference between the joint probabilities is used as a summary statistic: 

^ = y^—TEI^-^1!- (2) 
*-*=! Viqi ijk 

The joint probability discrepancy {(j>Jjk ~<f>Jjk ) will necessarily decrease as each equally sized subset 
is added because the ratio of the number of counts added at each iteration to the counts already 
in the model decreases as t increases. This effect will be illustrated using the following example. 
Suppose that there exists a model with one variable which can take on two values, A and B, 
and 400 data points exist for building the model. To determine convergence, the 400 points are 
separated into four equally sized subsets. Each subset has exactly 50 instantiations of A and 50 
of B, although this is unknown a priori. In addition to computing the convergence parameters 
{(frijk) at each iteration, the maximum that each of these parameters can change given the data 
that are added at each iteration is also computed. This quantity is denoted \<p[jk max — 4>\ k |, 

where 4>J,k max is the value that maximizes this quantity. This example is show in Table 1. As 
equal amounts of data are added (100 points), the maximum possible difference between the model 
parameters decreases from 0.25 to 0.13. To counteract this effect when adding equal quantities of 
data, Equation 2 is normalized by the mean of the maximum possible parameter discrepancy, 

<tyr,max =  Vn     rn   £ I ^5*,max ~ <f>Jjk * I > (3) 
Li=\U(li 1Jk 

where the term \4>Jlkmax — 0yj£ | is defined as the maximum value that the joint probabilities can 
change given the parental instantiations that are observed with subset t. This maximum is found 
when 

NTk=i N^ + Nlj       when       ATj"1 = minWi. N^1 

lJ 0    otherwise 



TABLE 1 

Example illustrating the maximum that the individual model parameters can change 
given that constant sized data subsets are added to the model. 

T   jy|   yvg   g   4>l   ^,max   <^,max   \fA,m^-^v\   l4.maX-^"~ 
1 50 50 0.5 0.5 - - - - 

2 100 100 0.5 0.5 0.75 0.25 0.25 0.25 

3 150 150 0.5 0.5 0.67 0.33 0.17 0.17 

4 200 200 0.5 0.5 0.63 0.38 0.13 0.13 

where the quantity min^ N^ is the minimum probability of the discrete distribution P{xi | 7TJJ) 

for the data summation T — 1. In other terms, this maximum value is found when all of the data 
for a parental instantiation at the current iteration is added to the parameter with the lowest value 

following the previous data iteration. This metric, 64>T/&<f>T,max, is termed the "normalized mean 
convergence", and qualitatively is a summary of how much the model parameters actually deviate 
compared to the maximum amount that the parameters can change. Considering only the error 
caused by sampling from the actual population of encounters, this metric is approximately constant 
over the number of iterations. When there are multiple disparate populations and one subset does 
not capture adequate samples from each population, then the metric will be observed to converge 
to a non-zero value with increasing data. The former behavior illustrates that an increased amount 
of data only reduces the error in estimating the discrete distributions, while the latter convergence 
behavior indicates that increased data also provide additional information. The normalized mean 
convergence will not converge to zero because the parameters in the model will almost always 
change due to sampling error when additional data are added. 

2.2.2    NMAC Probability Convergence 

The process for determining the P(nmac | enc) is different for the uncorrelated and correlated 
models. For the correlated model, the expected P(nmac | enc) is encoded directly in the model— 
P(vmd < 100ft,hmd < 500 ft | enc). When computing this probability, a uniform geographic 
assumption (over airspace class and altitude layer) was assumed to remove the effects of differing 
geographic distributions between the CONUS and littoral models (see Eq. 8). The P(nmac | enc) 
for the uncorrelated model must be determined through simulation since it is not explicitly defined 
within the model. Although simulation must be used to determine the NMAC probability, for 
the specific case of non-maneuvering aircraft (i.e., not accelerating, turning, or climbing), the 
P(nmac | enc) without a collision avoidance system is r^m&c/r^nc when the ratio of cylinder height 
to width is the same for both the encounter cylinder and the NMAC cylinder. For the uncorrelated 
simulation, an encounter cylinder with a height of 2500 ft and a width of 12,500 ft was assumed (25 
times the NMAC cylinder dimensions). Thus, the expected non-maneuvering NMAC probability 
is 1/252 or 1.6- 10~3. 

The direct sampling method for determining the NMAC probability convergence curve for the 
uncorrelated model would require simulating 32 sets of encounters, one for each addition of data. 



In practice, upwards of one million encounters are required for each simulation, so the convergence 
determination process would required 32 million simulations. Instead, importance sampling [23] 
is used to reduce the computational requirement by creating one set of encounters for the model 
with the full data set and subsequently weighting the NMAC probability according the probability 
that the encounter would have resulted from each of the 32 submodels. The Bayesian network 
model, including the graphical structure (G) and the parameters (#), is denoted B. B without a 
superscript denotes the model with the full set of data. The importance sampling procedure when 
determining the NMAC probability is estimated using 

1 Pfenc I B^) 
P(nmac I enc, BT) = — V Pfnmac I enc. £)-    /   ' ', „/ . (5) 

'      N *-* P(enc | B) 

The term P(enc | BT)/P(enc \ B) is termed the importance sampling weight and is 

P(enc | BT) _ P(x(
1
!) | BT)P{xf | BT) 

P(enc | B) F(xW | B)P(x^ \ B) 
(6) 

where x/ and x.J, are the model samples for encounter i and Aircraft 1 and Aircraft 2, respectively. 
P(xW) is the joint probability for the sample i from the posterior distribution of the encounter 
models (see Eq. E-l). The full formulation of P(x'!') is the combination of the joint probabilities 
for the initial and transition Bayesian networks, although only the initial network is considered for 
this analysis. Ignoring the transition network is useful for numerical convenience, since considering 
the transition network after a few hundred time steps would make each probability computationaly 
inconsequential. Furthermore, the joint probability is only considered over the non-geographic bins 
to remove discrepancies in the probabilities caused by different geographical distributions. These 
assumptions result in P(x^) simplifying to P(v^l\ v^l\mt\ip^'>), where the variables are defined at 
encounter initialization. It should be noted that the original method for initializing and weighting 
uncorrelated encounters to account for not using the appropriate sampling distributions (as in [7]) 
has been updated and is described in Appendix C. In addition to visually inspecting and discussing 
the results, the iteration where the NMAC probability estimate falls, and remains, within 1% and 
5% of the final estimate is presented. 

2.3     MODEL COMPARISON 

One of the primary assumptions for forming separate littoral models is that the encounter charac- 
teristics are sufficiently dissimilar from the CONUS models to warrant using the separate models. 
Thus, an effort is undertaken in this section to develop a methodology to validate this assumption 
by first comparing the individual feature distributions, then the complete models themselves. 

2.3.1     Marginal Distribution Comparison 

A basic quantitative comparison between two discrete probability distributions is to directly com- 
pare the model's individual feature distributions—e.g., airspeed, vertical rate. Equation 7 displays 



the method for computing the marginal distribution of the variable instantiation X{ given the con- 
ditional probability of the variable given the jth parental instantiation 7Tjj and the probability of 
the parental instantiation. 

P(*i) = £P(*< = *|iry)P(iry) (7) 

It is possible that the marginal feature distributions for two regions may differ based solely on the 
different airspace structure—i.e., the airspace class (A) and altitude layer (L) distributions may 
vary, resulting in a perceived change in the overall aircraft behavior. For example, if the New York 
City airspace is compared to the North Dakota airspace, differences are expected in the feature 
distributions which is likely caused by differences in the airspace structure—the New York City 
airspace is saturated with terminal areas and a high aircraft density in Class A airspace while the 
North Dakota airspace is mostly Class E and G airspace below 18,000 ft mean sea level (MSL) with 
a small amount of transiting (en route) traffic. Thus, Equation 8 is used to remove this factor from 
the analysis, where qA,L is the number of A and L parental instantiations for variable i. 

Pobj(*i) = —£P(xiM,L) (8) 

This formation essentially assumes an objective (uniform) probability distribution over A and L— 
the probability of each airspace class and altitude layer is assumed equal. An alternative is to 
assume the A and L distribution for one of the models although the metric as formulated ignores 
any dependence on these variables. 

Classically, the Pearson's x2 goodness-of-fit test has been used to assess whether the difference 
between the expected and sampled univariate distributions is the result of sampling error [24]: 

X2 = £ (n*'S " Uk'E)2 , (9) 
fc=l nk>E 

where K is the number of discrete bins, nk is the kth bin frequency (counts), and the subscripts S 
and E denote the sampled and expected distributions, respectively. This formulation assumes that 
the x2 distribution has K — 1 degrees of freedom. For this discussion, the expected distribution 
will be that for the CONUS model while the sampled will be that of the littoral model. Using 
this formulation of the goodness-of-fit test assesses the null hypothesis that the difference between 
the expected distribution (CONUS) and sampled distribution (littoral) is caused by sampling error 
alone. This test was originally intended for relatively small sample sizes: as the number of samples 
increases beyond approximately 10,000, \2 becomes highly sensitive to minor deviations between 
the two distributions such that the deviations may become statistically significant according to the 
test [25]. To illustrate this effect and the amount of deviation that the test allows, Equation 9 is 
solved for the deviance, defined according to 

d(X
2) = \PS - pE\ = \j~i , (10) 

where p is the bin frequency (njt) normalized by the sample size n.   The deviance is defined as 
the assumed constant relative frequency difference between the expected and sampled distributions 
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when the expected distribution (p#) is assumed uniform. The subscript k is excluded in Equation 10 
to stress that the deviance assumes that the difference between each frequency is constant for each 
bin. Furthermore, this metric should not be confused with the expected value of the bin frequency 
difference. Although d(x2) provides insight into the x test's allowable difference between the 
distributions, Equation 9 is again modified, this time assuming that the total difference between 
distributions is associated with a single bin. Although this is not practically possible since the 
relative frequencies (p) must sum to unity for each distribution, this formulation of the deviance 
places an upper bound on the allowable difference for each bin. This formulation is termed the 
maximum deviance, and is given by 

dmax(x2) = V —g > argmax(|pfciS - PkM) • (n) 

Observe that the constructions for d(x2) and dm£Uc(x2) differ by \J\jK. This definition of the 
deviance should not be confused with the Bayesian deviance which is also used to compare the fit 
of probabilistic models [26]. For a sample size of 10,000, assuming a p-value of 5%, with seven bins, 
d(x2) = 5.1 • 10~3 and dma,x(x

2) = 1.34 • 10~2, indicating that very small deviances would result 
in rejecting the hypothesis that the distributions were equivalent. Hamada et al. [27] recommend 
selecting the number of bins proporational to the sample size, or K ~ n , when using a goodness- 
of-fit test. Since the bins are already defined for the encounter models, the sample size used for 
calculation of the x2 statistic may be modified, resulting in a goodness-of-fit test of the formulation 

2            v- \Pk,S - Pk,E) ,. „s 
X   =nm2^ , (12) 

where nm is the modified sample size (nm = K25 according to Hamada et al.). The deviance and 
maximum deviance for nm = K25 and nm = 1000 as a function of the number of bins are shown 
in Figure 3 to illustrate the difference between the two effective sample size assumptions. 

Since the CONUS and littoral models are compared directly, the true sample size of the marginal 
littoral distribution is the number of data points filtered by the littoral buffer (7.38 • 10f>). The 
standard x2 test would almost certainly reject the two distributions as being equivalent due to the 
large number of data instances; therefore, the modified sample size nm is instead set to 1000. This 
is equivalent to allowing the same distribution discrepancy that is accepted for the standard x2 

test with 1000 samples. Using the x2 test with a modified sample size of 1000, allows for deviances 
caused by factors other than sampling error. The sample size formulation proportional to K is not 
used since it allows an unacceptable deviance with fewer than five bins. Because the results of any 
hypothesis test may be misleading, the associated p-values and the distributions themselves are 
also presented. The p-value is the probability of obtaining the sample (littoral) distribution or one 
more extreme by chance alone; thus, a p-value near zero indicates little confidence that that the 
sample came from the proposed distribution. 

2.3.2    Bayesian Network Similarity Score 

Although comparing the marginal feature distributions provides a quantitative measure of the dis- 
crepancy between the two distributions, it does not consider the interdependences between variables 
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Figure 3. Deviance metric sensitivity to number of bins assuming a p-value of 5%. Shown is the the nominal 
and maximum deviance for two definitions of the sample size. 

that are explicitly captured within the Bayesian network. A complete comparison between the two 
models should consider this important model characteristic. In order to quantitatively compare the 
models, the probability that two different populations have the same Bayesian network parameters 
given the recorded data is computed. This assumes that the graphical structure of both networks 
is identical. 

The true parameters of the two populations are denoted as 9\ and #2 and the data associated with 
the two populations as D\ and Di- The posterior is computed as P{6\ = 62 I Di,D2), which 
involves multiplying the prior distribution of the hypothesis that P{9\ = 92) by the ratio 

P(D1,D2\9i = e2) fP(Dl,D2\e)p(6)d6 

P(D, ,D2) ~ [f p(Di I 0)PW 
de\ [/ P(D2 I 0)p(d) dd] ' 

Defining f{D) = j P(D\9)p(9)d6, the ratio becomes 

/(A U D2) 
f(Dx)f(D2) ' 

As shown by Cooper and Herskovits [28] and using the notation used in Appendix E, 

w»=n n r(ayo) n r(aijfc + Nijk) 

\ j=\ r(a'J0 + Nij) A=l       T(aijk) 

(13) 

(14) 

(15) 

where a is the prior and T is the standard gamma function. The natural logarithm of the ratio in 
Equation 13 is used to compare the feature distributions from the different data sets. The more 
positive the log-ratio is, the more likely the distributions are the same. Negative log-ratios indicate 
that the distributions are different. Because this metric is not intuitive, the maximum log-ratios 
are also presented; this maximum is simply the CONUS model compared against itself. Positive 
log-ratios near this maximum indicate greater similarity than positive log-ratios near to zero. 
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3.    UNCORRELATED ENCOUNTER MODEL 

Figures 4 and 5 illustrate the optimal initial and transition network structures for the littoral 
uncorrelated model, respectively. Note that the optimal littoral initial network is identical to that 
for the CONUS model while the transition networks differ (see Appendix D.l for the network 
candidates considered). The sole difference is that the initial airspeed (v) is not a parent variable 
in the littoral transition network. This reduces the transition network complexity such than the 
number of parameters is reduced from 22,344 for the CONUS model to 6972 for the littoral model. 

Figure Jh  Bayesian network structure representing the initial conditions for the littoral uncorrelated model. 

3.1  CONVERGENCE 

The model parameter convergence as discussed in Section 2.2.1 for the initial network structure is 
shown in Figure 6. Both the CONUS and littoral models display approximately the same general 
behavior, although for all iterations, the normalized mean convergence is lower for the CONUS 
model.  This is expected due to the significantly larger amount of data available for the CONUS 
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Figure 5. Transition network structure for the littoral uncorrelated model. The transition network propagates 
the initial conditions during the encounter and is updated at one second intervals. 

model which results in a reduced sampling error. Because of the similar behavior (the same ob- 
served ratio between the littoral and CONUS values), the mean of the ratio between the two mean 
convergence is computed. This results in an estimate of the relative convergence between the two 
models. The mean of the ratios between the CONUS and littoral convergences shown in this fig- 
ure is 3.83, indicating that the littoral model parameters converged to about 26% of that for the 
CONUS model. 
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Figure 6.  Uncorrelated model initial parameter convergence for the CONUS and littoral models. 

Figure 7 shows the normalized mean convergence for the transition network. The mean of the ratios 
between the two models is reduced from 3.82 for the initial network to 2.39 for the transition net- 
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work. This slight reduction is caused by an associated reduction in the total number of parameters 
that must be estimated in the littoral transition network. 
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Figure 7.  Uncorrelated model transition network parameter convergence for the CONUS and littoral models. 

From these two convergence illustrations, there is an observed relationship between the normalized 
mean convergence and the total number of estimated parameters together with the number of 
observations used to build the model. This relationship, the mean ratio between the normalized 
mean convergences for the CONUS and littoral models, is observed to be approximately 

. / •conus ^littoral \ 

V J'littoral ^conus / 
(16) 

where N is the total number of observations (equivalent to Ni for a model without missing data), n 
is the the total number of parameters in the model, and C, is a correction constant. This correction 
factor is introduced because the expression does not consider the complex model interdependences 
and how the data affects the selection of the optimal network. From the data, C, is 1.34 for the 
initial network and 1.2 for the transition network, indicating strong confidence in this relationship 
between the convergence metric and model's number of parameters and observations. 

Although the normalized mean convergence allows for the quantitative comparison between the 
parameter convergence of the two models, the P(nmac | enc) convergence provides a metric which 
demonstrates how the quantity of data together with the optimal network structure will affect 
the specific quantity of interest. This P(nmac | enc) estimate using the procedure discussed in 
Section 2.2.2 for both the CONUS and the littoral models is shown in Figure 8. From visual 
inspection, it was determined that the CONUS model converged at approximately 18 iterations, 
while the littoral model converged at 26 iterations. This aligns with the 1% threshold when assessing 
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the percent deviation from the final P(nmac | enc) estimate—both the littoral and CONUS model 
converged to within 1% at 18 iterations. The CONUS model converged to within 5% of the final 
estimate immediately (at the first iteration) while the littoral model converged at iteration 12. The 
theoretical F(nmac | enc) should be 1.6 • 10~3 under the assumptions presented in Section 2.2.2. 
The P(nmac | enc) in the figure may not exactly match because of sampling error, and the model 
characteristics (e.g., acceleration, turn rates) that were not considered in the extensive assumptions 
used for the 1.6 • 10"3 approximation. 
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Figure 8.  Uncorrelated P(nmac \ enc) convergence for the CONUS and littoral models. 

3.2    MODEL COMPARISON 

Figure 9 illustrates the comparison of the marginal discrete distributions for the model variables. 
Superimposed is the p-value calculated from Equation 12 using the standard x probability dis- 
tribution with K — 1 degrees of freedom. The p-value is the probability of obtaining the sample 
(littoral) distribution or one more extreme by chance alone; a p-value near zero indicates little con- 
fidence that the two distributions are equivalent. The marginal distributions for the non-geographic 
variables, including airspeed, acceleration, vertical rate, and turn rate, were marginalized assuming 
an objective (uniform) distribution over airspace class and layer (Eq. 8) while airspace class and 
altitude layer distributions are the standard marginal distributions (Eq. 7). 

The p-value results for airspace class, vertical rate, and acceleration are close to but below the 
commonly used 1% threshold. This indicates that the distributions are not equivalent according to 
the threshold, but the deviances observed for these variables are relatively minor compared to the 
airspeed and altitude layer deviances.   The hypothesis tests for airspeed, altitude layer and turn 
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rate demonstrate the results with high confidence, defined as a p-value very near zero or greater 
than 10%. The test indicates that the turn rate distributions are equivalent while the airspeed 
and altitude layer distributions are different. In general, the marginal distribution comparision 
illustrates that littoral 1200-eode aircraft have higher airspeeds and travel at higher altitudes than 
their CONUS equivalent. 

Table 2 shows the Bayesian network similarity score for the initial and transition networks. Also 
shown is the maximum possible value which is found by comparing the CONUS model to itself. 
Unfortunately, this metric can only be computed when the network structures are the same for 
both of the models being compared. The optimal transition network structures are different for the 
CONUS and littoral models, thus the littoral transition network was formed to match that for the 
CONUS model. This test, discussed in Section 2.3.2, indicates that the initial network parameters 
are different between the models with very high confidence, but that the transition networks are 
similar. From Figure 9, the littoral altitude layer distribution was statistically different than for 
the CONUS model. Therefore, the Bayesian similarity score test was also performed for each 
instantiation of altitude layer and airspace class, 16 in total, and consistent results to those in 
Table 2 were observed for each instantiation—all initial network similarity scores were negative 
while all transition network scores were positive. 

TABLE 2 

Uncorrelated model similarity scores. 

Network Score        Maximum Score 

Initial -959,784 70,831 
Transition 41,117 86,122 
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4.    CORRELATED ENCOUNTER MODEL 

Figures 10 and 11 show the optimal initial and transition network structures for the littoral cor- 
related model, respectively. Similar to the littoral uncorrelated model, the optimal initial network 
is the same for the CONUS and littoral models while the optimal transition networks differ (see 
Appendix D.2 for the network candidates considered). The altitude layer variable (L) is not a 
parent variable in the littoral correlated transition network while it is in the CONUS model. The 
absence of the altitude layer as a parent variable reduced the number of parameters in the transition 
network from 8100 for the CONUS model to 324 for the littoral model, a 25 fold reduction. 

Figure 10. Bayesian network structure representing the initial conditions for the littoral correlated model. 

4.1 CONVERGENCE 

Figure 12 illustrates the normalized mean convergence for the initial network. The mean ratio of 
the normalized mean convergence for the littoral model normalized by that for the CONUS model 
was 2.99, indicating that the littoral model converged to 33% of that for the CONUS model. The 
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Figure 11. Transition network structure for the littoral correlated model. 

relationship of Equation 16 was found to be equally valid for the correlated initial network, with 
£ being 1.06. The normalized mean convergence in Figure 12 demonstrates convergence behavior, 
as opposed to remaining constant, indicating that the individual data subsets do not encompass 
the complete diversity of encounters. Hence, several iterations are required before the normalized 
mean convergence metric approaches steady state. 
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Figure 12. Correlated model initial parameter convergence for the CONUS and littoral models. 
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Figure 13 illustrates the convergence for the transition network. Contrary to the convergence 
for the previous networks discussed, the normalized mean convergence is lower in general for the 
littoral model relative to the CONUS model. This is indicated by the mean ratio of the normalized 
convergence being 0.93 while it was greater than two for the other comparisons. This behavior 
is caused by the littoral correlated transition network having 25 times fewer parameters than the 
CONUS network while approximately 10% of the CONUS data was used for the littoral model. 
The correction factor £ for this case was 0.69, which is lower than that for the other convergence 
curves. This result indicates that Equation 16 with (, set to unity is only an approximation of the 
benefit of adding data to the encounter models using the normalized mean convergence metric. 
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Figure 13.  Correlated model transition network parameter convergence for the CONUS and littoral models. 

Although there is confidence that the littoral transition network parameters converged, there is still 
interest in the P(nmac | enc) convergence. Similar to the discrete marginal distribution comparison, 
a uniform marginalization over A and L was assumed to remove the effects of differing geographic 
distributions. This is illustrated in Figure 14. The CONUS model was determined (by visual 
inspection) to converge quite quickly, after about 12 iterations, while the NMAC probability for 
the littoral model was determined to converge after about 28 iterations. 

The convergence curve's percent deviation from the final P(nmac | enc) is illustrated in Figure 15. 
The littoral and CONUS model convergence falls within the 5% threshold at 31 and 20 iterations, 
respectively, while neither model's convergence falls and remains within the 1% threshold. The 
littoral model would converge to below 5% at 27 iterations, but the percent deviation increases to 
5.5% at iteration 30. The result that the models do not converge to within 1%. indicates that this 
arbitrary convergence threshold cannot be used independant of the general convergence behavior 
since it was assumed that the CONUS model converged. 
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Figure 15. Correlated P(nmac | enc) convergence expressed as the difference from the final estimate. The 
absolute value is presented, and the percent deviation is truncated at 100%. Doing so removes the CONUS 
model's first iteration point which is at approximately 250%. 

4.2    MODEL COMPARISON 

Similar the the comparison process for the uncorrelated model, the marginal distributions for the 
variables in the initial network are first compared, followed by the Bayesian network similarity 
score. For the purpose of the marginal comparison, the variables for both aircraft were combined 
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into one marginal distribution. The geographic variables, along with the airspeed, acceleration, 
vertical rate, and turn rate are shown in Figure 16. The geographic variables (i.e., altitude layer 
and airspace class) were determined to have different distributions with high confidence while the 
other variables were determined to have similar distributions. The airspeed distribution has the 
largest discrepancy of these non-geographic variables, which is indicated by the relatively low p- 
value. In general, it was observed that more littoral encounters occur in the lower altitude band, and 
that aircraft in littoral encounters tend to have lower vertical rates and turn rates when compared 
with CONUS encounters. 

Figure 17 illustrates the marginal comparison for the variables that are defined at the closest point 
of approach—termed the geometric variables. The hypothesis test indicates that all of the feature 
distributions are nearly the same, except for the the approach angle distribution. The aircraft 
category hypothesis test indicates that the distributions are not equivalent, but only nearly so with 
a p-value of 0.99%. 

Table 3 shows the Bayesian similarity scores. Both the initial and transition networks for the littoral 
model were determined to be similar to the CONUS model although the littoral transition network 
corresponded better to the CONUS model than did the initial network. Similar to the methodology 
for the uncorrelated model, the individual parental instantiations were also compared. The CONUS 
and littoral models agreed (all log-ratios were positive) except for the single instantiation of airspace 
classified as "other" and the lower altitude layer for the initial network. This instance may be caused 
by differing airspace procedures over the oceanic airspace at lower altitudes away from terminal 
areas. 

TABLE 3 

Correlated model similarity scores. 

Network        Score     Maximum Score 

Initial 1705 20.413 
Transition    20,910 36,467 
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Figure 16.  Correlated relative frequency feature comparison. 
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5.    SUMMARY 

The purpose of this analysis was to build a correlated and an uncorrelated conventional encounter 
model for the littoral regions of the National Airspace System. Recently, an exhaustive set of 
encounter models was built for the continental United States, encompassing conventional and un- 
conventional aircraft in correlated and uncorrelated encounters. Although these CONUS models 
captured encounters in the littoral region surrounding the CONUS, they did not explicitly classify 
the encounters into the littoral and non-littoral regions. Hence, the nine months of radar data used 
to build the original models were filtered to build these models specific to the littoral region. A 
littoral unconventional model was not built because of the very low occurrence of aircraft classified 
as unconventional (e.g., gliders, balloons) that were observed in the littoral airspace. 

The littoral region was broadly defined as the region where a maritime UAS would be likely to 
operate. Specifically, the littoral region was defined with respect to the shoreline, and an additional 
buffer of approximately 1 NM was added oceanward to remove any traffic that may be identified as 
littoral when transiting small oceanic inlets or bays. After filtering, fewer than 10% of the data were 
determined to be oceanic—10% of encounters and 3.8% of 1200-code track data were appropriate 
for building the correlated and uncorrelated models, respectively. Because of this relatively small 
quantity of data, one of the primary concerns was the convergence of the model. In addition, the 
CONUS and littoral models were directly compared to ensure that the littoral and CONUS models 
were statistically and realistically different. 

In order to determine if the models converged, two metrics were formed. First, the change in the 
model parameters as data were added was assessed. Second, the primary safety analysis metric of 
interest—P(nmac | enc)—was estimated as addition data were added. These convergence metrics 
were directly compared to those of the CONUS models. To determine whether the models were 
equivalent, the marginal discrete feature distributions were compared using a modified \2 similarity 
metric. Since this test was not able to capture the important dependencies in the Bayesian network 
models, the littoral and CONUS model were also compared using what was termed the Bayesian 
network similarity score which directly compared the model parameters. 

The primary conclusions of this work were: 

1. Both the littoral uncorrelated and correlated models converged. This was determined primar- 
ily through analysis of the Pfnmac | enc) as additional data were added since in all but one 
case, the littoral model parameters did not converge to the level of the CONUS model. In 
the other case, the littoral model converged to a greater extent because there were 25 times 
fewer parameters to be estimated in the littoral optimal model than for the CONUS optimal 
model. For both the correlated and uncorrelated models, the P(nmac | enc) converged much 
faster for the CONUS model. The CONUS model required 18 and 12 of the 32 iterations 
to converge for the uncorrelated and correlated model, respectively, while the littoral model 
required 20 and 28 iterations, respectively. 

2. It was determined that neither littoral model was significantly similar to its CONUS coun- 
terpart to warrant not using the littoral models. 

L'7 



(a) For the uncorrelated models, the littoral initial network was found to be significantly 
dissimilar from the CONUS initial network when using both the marginal distribution 
test and the Bayesian network similarity score. Specifically, the airspeed and altitude 
layer distribution varied greatly between the littoral and CONUS uncorrelated initial 
networks. The littoral and CONUS correlated model initial networks were found to be 
similar using the Bayesian network similarity score, although the geographic variables 
(airspace class and altitude layer) and the approach angle at closest point of approach 
(CPA) were found to be dissimilar. 

(b) The transition networks for both the littoral correlated and uncorrelated models were 
found to be similar to the CONUS models using the Bayesian network similarity score. 
This was true even though the optimal littoral transition network was not used because 
the scoring metric required the same network structure for the models being compared. 
For both the correlated and uncorrelated models, the littoral and CONUS initial net- 
works were found to be less similar than the transition networks. This discrepancy 
is thought to be caused by underlying differences in the airspace affecting the initial 
network, while the pilot's behavior, which would affect the transition network, remains 
similar. 

5.1    FUTURE WORK 

A comprehensive safety analysis requires the characterization of both the encounter attributes (as 
was accomplished in this document) as well as the airspace density. The NMAC rate in a given 
airspace is the combination of the expected encounter rate and the probability that an encounter 
event leads to a NMAC. The expected encounter rate is directly proportional to the average airspace 
density. 

It is not trivial to characterize the noncooperative traffic density because primary radar returns 
consist of clutter and birds in addition to the noncooperative traffic of interest. Furthermore, many 
ATC radars cannot estimate altitude (other than ARSR-4 sensors on the exterior of the CONUS), 
so either altitude cannot be considered or it must be estimated using a technique called multian- 
gulation. Lincoln Laboratory has completed a preliminary study classifying noncooperative tracks 
into birds and aircraft [29] and has also developed preliminary algorithms for multiangulation using 
a network of two-dimensional ATC radars [30]. It is therefore recommended that a methodology 
for characterizing the littoral noncooperative density be established. 

Encounter characteristics and traffic density are expected to change as the Federal Aviation Administration 
implements the Next Generation Air Transportation System (NextGen), commercial air traffic den- 
sity increases, and newer vehicles are introduced into the NAS (e.g., UASs, very-light jets). It is 
important that the encounter and airspace density models are kept current throughout the devel- 
opment and certification of the UAS SAA systems. This ensures that conclusions derived from 
the models are valid when the system reaches initial operating capability. This process includes 
capturing recent airspace data, monitoring the airspace characteristics for changes, and updating 
the encounter models as necessary. 
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The DHS UAS operational environment may extend beyond the limits of CONUS-based ground 
radars. Therefore, it is important to characterize the oceanic environment beyond the range of 
these sensors—e.g., the Carribean Sea, northern coast of South America. Data sources and a 
methodology for utilizing these sensors should be established to create encounter and density models 
representative of the expected oceanic operating environment. 
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APPENDIX A 
CONTINUOUS FEATURE COMPARISON 

The following sections display the continuous model feature distributions that were discretized 
when building the models (except for variables that are fundamentally discrete, such as airspace 
class). The distributions are normalized such that the integral over the feature limits for both the 
CONUS and littoral models are equal. 

A.l     UNCORRELATED MODEL 

-2000 -1000 0 1000 2000 

Vertical Rate (ft/min) 

Figure A-l. Aircraft vertical rate in uncorrelated encounters magnified for detailed vieiv of distribution tails. 
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Figure A-2. Uncorrelated relative frequency feature comparison for continuous variables. Of note are the low 
period altitude oscillations which are caused by altitude quantization while the longer period littoral altitude 
oscillations correspond with standard VFR cruising altitudes—these are not present in the CONUS data due 
to terrain variation. 
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A.2    CORRELATED MODEL 
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Figure A-3.  Correlated relative frequency feature comparison for continuous variables.   The MSL altitude is the 
altitude of the higher aircraft at CPA. 
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Figure A-4-  Correlated relative frequency feature comparison for continuous variables defined at the closest 
point of approach. 
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Figure A-5. Aircraft vertical rate in correlated encounters magnified for detailed view of distribution tails. 
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APPENDIX B 
MODEL VARIABLES 

The model variables are reprinted from the CONUS model documentation for reference. 

B.l     UNCORRELATED MODEL 

There are six variables in the uncorrelated encounter model: 

• Airspace class A: The airspace class variable was incorporated into the model to account 
for the variation in how aircraft fly in different airspace classes. This variable may take on one 
of four values: B, C, D, and O, indicating which class of airspace the aircraft is in. The values 
B, C, and D correspond to the controlled airspace classes defined by the FAA. The value O 
represents "other airspace," including airspace Classes E and G. Note that there should be 
no VFR aircraft in Class A due to the requirement that aircraft in that Class of airspace fly 
under Instrument Flight Rules. 

• Altitude layer L: Airspace is divided into four altitude layers, in a process similar to 
prior encounter models developed by Eurocontrol. The first layer spans from 500 to 1200 ft 
Above Ground Level (AGL) to capture aircraft in the traffic pattern or performing low- 
level maneuvers. The second layer spans a transition zone from 1200 to 3000 ft AGL, the 
cruise altitude where the hemispheric rule begins. The third layer spans from 3000 ft AGL 
to 5000 ft AGL covering a mix of low-altitude enroute and maneuvering aircraft. The fourth 
layer includes airspace above 5000 ft AGL and would cover most enroute VFR traffic. 

• Airspeed u: We model true airspeed and allow it to vary during flight. 

• Acceleration v: We allow airspeed acceleration to vary every second, providing higher- 
fidelity motion than prior models. 

• Turn rate i/;: Turn rate is permitted to change every second in our model. The prior 
European and ICAO cooperative models allowed only a single turn during an encounter. 

• Vertical rate hi The vertical rate is permitted to change at every second. All prior cooper- 
ative models allowed only a single vertical acceleration period during an encounter. 

B.2    CORRELATED MODEL 

The aircraft at the higher altitude at TCA is called ACl. The other aircraft is called AC2. The 
remainder of this section explains how we model the relationship between the behavior of these two 
aircraft. We model the following variables to describe each encounter: 

• Vertical Miss Distance vmd: Vertical miss distance is defined as the difference in altitude 
between the two aircraft at the point of closest approach (point of minimum horizontal miss 
distance). 
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• Horizontal Miss Distance hmd: Horizontal miss distance is defined as the horizontal range 
between the two aircraft at the point of closest approach (point of minimum horizontal miss 
distance). 

• Airspace class A: This variable may take on one of four values: B, C, D, and O, indicating 
which class of airspace the encounter is in. The values B, C, and D correspond to the controlled 
airspace classes defined by the FAA. The value 0 represents "other airspace," which includes 
Class A, E, and G airspace. The airspace class variable was incorporated into the model to 
account for the variation in how aircraft fly in different airspace classes. Note that Class A 
can be distinguished from Classes E and G by referring to the next variable: altitude layer. 

• Altitude layer L: Airspace is divided into five altitude layers, similar to prior encounter 
models developed by Eurocontrol. The first layer spans from 1000 to 3000 ft Above Ground 
Level (AGL) to capture encounters in the traffic pattern. Encounters that occur below 
1000 ft AGL are filtered out; TCAS, for example, will not issue resolution advisories for en- 
counters occurring below 1000 ft AGL. The second layer spans from 3000 ft AGL to 10,000 ft 
Mean Sea Level (MSL), the upper limit for aircraft without transponders and the 250 kt air- 
speed restriction. The third layer spans from 10,000 ft MSL to FL180, the upper limit for 
VFR traffic and the beginning of Class A airspace. The fourth layer spans from FL180 to 
FL290, the beginning of the Reduced Vertical Separation Minimum (RVSM). The fifth layer 
includes all airspace above FL290. The altitude layer for an encounter is determined by the 
altitude of AC1 at TCA. 

• Approach Angle 3: Approach angle is the heading of AC2 relative to AC1 at TCA. Fig- 
ure B-l shows how 0 is calculated. The European encounter models also used this definition. 

• Bearing \: Figure B-l shows how the bearing of AC2 relative to AC1 is calculated at TCA. 
Given 0, hmd, and Xi we can uniquely identify the lateral position and orientation of AC2 
relative to AC1 at TCA. 

• Category C\ and Ci'~ We currently divide aircraft into two categories: 1200-code aircraft 
and discrete-code aircraft. Compared to discrete-code aircraft, aircraft squawking 1200 tend 
to accelerate more frequently, fly at lower altitudes and at lower speeds, and are often smaller 
aircraft. 

• Initial Airspeed v\ and v?: We model initial airspeeds of the two aircraft. We assume zero 
wind since aircraft close enough to be in an encounter situation are most likely within the 
same air mass and experiencing approximately the same windfield. 

• Acceleration uj and v^i The model assumes constant airspeed acceleration for the duration 
of the encounter as was the case in the prior European encounter models. This is a reasonable 
approximation given the short 50 s duration of each encounter. 

• Turn rate V;i and V;2: Turn rate is permitted to change every second in the model. The 
prior European and ICAO models allowed only a single turn during an encounter. 

• Vertical rate hi and hi'. The vertical rate is permitted to change at every second. All prior 
cooperative models allowed only a single vertical acceleration period during an encounter. 
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APPENDIX C 
UNCORRELATED MODEL ADDENDUM 

Section 6.1 of the uncorrelated model documentation described the process for estimating the 
NMAC probability [7]. The method for estimating the NMAC probability in this section should be 
used in its place. The process for initializing uncorrelated encounters is reprinted here for reference 
followed a description of the modifications to the NMAC probability calculation. 

C.l     ENCOUNTER INITIALIZATION 

We use rejection sampling to generate the initial conditions of an encounter. Rejection sampling 
involves proposing a series of candidate samples from a random distribution until choosing one that 
meets a set of criteria. The process we use for generating initial conditions for encounters is as 
follows: 

1. Generate airspeeds, vertical rates, turn rates, and accelerations for AC1 and AC2 according to 
their models such that they belong to the same airspace class and altitude layer. Forcing this 
constraint can be done using rejection sampling. Simply generate ACl and AC2 independent ly 
and reject both if they have a different airspace class or altitude layer.1 ACl and AC2 are 
termed the own and intruder aircraft, respectively. 

2. Initialize the position of AC2 on the surface of the encounter cylinder centered on ACl. 
AC2 may be initialized on the top, bottom, or side surfaces of the encounter cylinder. The 
probability of being located on the top, bottom, or side is proportional to the volume swept 
out by each encounter cylinder surface. Once top, bottom, or side has been selected, AC2 is 
randomly positioned using a two-dimensional uniform distribution across that surface. The 
bearing of AC2 relative to ACl is denoted x- 

3. The heading of ACl is set to zero for simplicity. The heading of AC2, denoted xj>, is randomly 
selected from a uniform distribution over [7r, 7r). 

4. If AC2 was initialized on the top of the encounter cylinder, accept the sample if the vertical 
rate of AC2 relative to ACl, denoted URIV, is negative. This ensures that AC2 is penetrating 
the encounter cylinder for the first time. 

5. If AC2 was initialized on the bottom of the encounter cylinder, accept the sample if the 
vertical rate of AC2 relative to ACl, denoted VR,V, is positive. This ensures that AC2 is 
penetrating the encounter cylinder for the first time. 

G. If AC2 was initialized on the side of the encounter cylinder, accept the sample if R • VHJ, 

is negative, where R = (sin x, cos x) is the representation of the horizontal unit vector from 
ACl to AC2 in the (East, North) coordinate frame and VRJ, is V2—Vi. The vectors vi and V2 

^ote that this will result in an incorrect distribution over airspace class and layer (compared to that observed). 
Reference Section C.4 for the proper correction. 
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are the horizontal ground velocities of AC1 and AC2 respectively. When R • VR ^ is negative, 
the relative velocity of AC2 with respect to AC1 is into the encounter cylinder, and therefore 
the encounter should be accepted. 

The process is repeated until a candidate initialization is accepted. A byproduct of rejection 
sampling is that the intruder bearing distribution is nonuniform. As one would expect, more 
encounters occur head on than from the side or rear. Figure C-l illustrates the initial horizontal 
variables for uncorrelated encounters at the instant when the intruder aircraft penetrates the side 
of the encounter cylinder. 

VR,h = V2 - Vi 

AC1    n 

N* 

K 

Figure C-l. Horizontal plane encounter initialization. 

C.2    ESTIMATING NMAC PROBABILITY 

This initialization procedure is the result of the fundamental assumption that the two aircraft blun- 
der into close proximity. The penetration angle (<p) represents the scalar projection of the relative 
horizontal velocity (VR^) onto the radial vector (R) and is a function of the initial intruder bearing, 
intruder heading, and the initial horizontal airspeeds of the aircraft. An encounter is defined only if 
the intruder penetrates the encounter cylinder—(p must be on the interval (—7r/2,7r/2). Therefore, 
the encounter depicted by Figure C-l would be rejected and a new encounter would need to be 
initialized. A similar procedure is required for intruders that penetrate the top or bottom of the 
encounter cylinder. 
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Ideally, the encounter parameters would be sampled according to the appropriate probability dis- 
tributions describing the expected encounter geometry. If encounters were sampled according to 
the appropriate distributions, then the NMAC probability estimate would simply be the number 
of encounters resulting in NMACs normalized by the total number of simulated encounters. There 
are three a posteriori corrections that must be used when estimating the NMAC probability. 

1. Encounters are more likely to occur among aircraft with higher relative airspeeds, but air- 
speeds are sampled from the distribution of observed aircraft airspeeds. 

2. When the intruder penetrates the side face of the cylinder, the initial bearing and heading 
of the intruder are sampled uniformly, but intruder bearings and headings which result in a 
penetration angle nearer to zero are more likely. In other terms, encounters where the relative 
velocity penetrates the encounter cylinder directly are more likely to occur than when the 
relative velocity skims the edge of the encounter cylinder.2 

3. Encounters are not generated with the correct proportion of intruders penetrating the top or 
bottom of the cylinder compared to the side of the cylinder. The true proportion is derived 
from the volume that each face of the encounter cylinder sweeps out per unit time. Hence, 
the effort of estimating P(nmac | enc) may be decoupled into the horizontal and vertical 
components and then combined into an overall estimate. 

Since encounters are not sampled from the actual distributions, the encounters must be weighted 
to compensate for the difference between the actual and sampling distributions. This process is 
known as importance sampling [23]. The general process for estimating P(nmac | enc) using the 
actual distribution p(x) and the sampling distribution q{x) is 

^J g(x<*>) 

P(nmac | enc) =       _    ,   «*   ; , (C-l) 

where f(x) is the probability of an NMAC given the generated samples (x^), where / denotes an 
encounter sample. It should be noted that f(x) is not constrained to be P(nmac | enc), but rather 
any metric—e.g., vertical miss distance, course deviation. Because the summation of the weights is 
generally unnormalized (does not sum to unity), we must normalize by the term X^P(x^)/<?Or^)- 

The weighting to correct the improper sampling of airspeeds and the penetration angle is described 

by 

p(x^)       I   Uj^hcos<^    for initialization on side of cylinder 

q(x(l>) v^,'v    for initialization on top/bottom of cylinder 
(C-2) 

The term cos</> is equivalent to —VRth • r. The average relative volume that the encounter cylinder 
sweeps out per unit time is 

V = 4renchencvRth + 7rrgncuR,v , (C-3) 

2Section C.3 describes the method for accounting for this correction when initializing encounters. 
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where VR^ and UR,V are the magnitudes of the average relative horizontal and vertical airspeeds 
between any two aircraft in the airspace, respectively. Note that UR^ and UR]V are not the relative 
airspeeds between pairs of aircraft that result in an encounter, but rather between any two aircraft 
in the airspace. Therefore, they do not need to be weighted to adjust for those pairs resulting in 
encounters. The average relative airspeeds may be estimated directly from the sample mean of the 

(i) initial relative airspeed—e.g., UR^ = 1/N Yli "aV The encounter rate is 

Aenc = pV , (C-4) 

where p is the airspace density [31]. The NMAC rate is therefore defined by 

Anmac = P(nmac | enc)Aenc . (C-5) 

It should be noted that this formation of the encounter rate (Equation C-4) is the rate at which a 
single aircraft encounters a population of intruder aircraft as opposed to the rate of all encounters 
between any two aircraft in a specified airspace. 

From Equation C-3, the total volume swept out by the encounter cylinder can be decoupled into 
horizontal and vertical components. The ratio of the number of encounters penetrating the side of 
the encounter cylinder (rih) to the number penetrating the top or bottom (nv) is proportional to 
the ratio of the horizontal and vertical swept volumes, or 

raj, Vh        47-enc/lencWR,h (r, r\ 
   =  ~  —   n—=  • (C-6) 
nv Vv 7T^ncuR,v 

Expanding Equation C-l with the weighting of Equation C-2 and correcting for the proportion of 
encounters penetrating each cylinder surface results in the NMAC probability formulation 

p(          ,       ,      (ZiV{K]hcos^f(x^)\ ArenchencvKM  ,   (ZjV&nxU))\ ^^ 
Pfmnac   enc) =  —pz =  +     — '—r-.     —^=—- .    (C-7) 

Indices i and j denote encounter samples where the intruder penetrates the horizontal and vertical 
surfaces of the cylinder, respectively. The terms in parenthesis correct for the improper sampling of 
the relative airspeed and the penetration angle, while the term outside of the parenthesis corrects 
for the improper proportion of intruders initialized on each cylinder surface. 

C.3     ALTERNATIVE SAMPLING METHODOLOGY 

The method described above for initializing AC2 on the side of the encounter cylinder centered on 
AC1 is intuitive. But, this method results in an abundance of short encounters where the closest 
point of approach (defined at the minimum horizontal separation) is near the radius of the encounter 
cylinder. These short encounters, on the order of 10 s, do not affect the NMAC probability because 
an avoidance maneuver is very unlikely. In addition, the standard method for initializing encounters 
also does not allow for the explicit definition of the CPA distribution, which is useful when the 
analyst wants to focus computation on close encounter situations (i.e., NMACs).  The procedure 
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Figure C-2. Alternative horizontal plane, sampling methodology illustration. 

as described below is illustrated in Figure C-2 and replaces step (2) in Section C.l for horizontal 
encounters. Step (6), which ensures that the intruder penetrates the encounter cylinder, is no 
longer necessary. 

1. Instead of initializing intruder aircraft on the horizontal face of the encounter cylinder by uni- 
formly sampling the initial relative bearing (x), intruder aircraft are initialized by uniformly 
sampling the horizontal miss distance (HMD) on the interval [0,reilc]- 

2. The intruder aircraft (AC2) is notionally placed a distance HMD from AC1 at CPA. AC2 may 
be placed in front or behind ACl. Each is equally probable, so one should sample uniformly 
over the two options. 

3. The CPA, assuming straight line trajectories, is the position where the sampled HMD is 
satisfied together with the condition that hmd is perpendicular to VR^- The vector hmd is 
the position vector from ACl to the CPA. 

4. AC2 is then placed on the encounter cylinder by finding the intersection of VRI, with the hor- 
izontal cylinder boundary. This procedure is accomplished such that the intruder penetrates 
the encounter cylinder at initialization. 

The sampling of the intruder aircraft heading is left unchanged. The initial relative altitude, defined 
at penetration of the encounter cylinder, is sampled uniformly on the interval [—heac,henc].  Note 
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that the notional CPA created during this process is unlikely to be realized during simulation 
because VRh is the initial relative airspeed and is therefore likely to change during the encounter— 
i.e., it is only used for this initialization procedure. When using this encounter initialization method, 
the term cos<?!> is no longer needed in Equation C-7, resulting in 

P, I       !      /E."!i.)h/(^l))'i4r.„c/.e„ctiR.l,      fe4?,/(z0>)W;,,e,3R.v P(nmac, cnc). {-^-j —^ + {-^AT) —'     (c"8) 

Note that this procedure is only for encounters initialized on the side face of the encounter cylinder. 
Although it is beyond the scope of this document, a similar procedure may be used to initialize 
encounters when the encounter volume is a sphere. If enough aircraft tracks (encounter model 
samples) are formed prior to encounter initialization, a high-confidence estimate of the ratio of 
intruders penetrating each face could be formed according to Equation C-6. This estimate could 
then be used to correctly sample the encounter cylinder penetration face, removing the need for 
each cylinder face contribution to the swept volume in Equation C-8. 

C.4    ALTITUDE LAYER AND CLASS WEIGHTING 

Encounters are generated according to the altitude layer and airspace class distributions defined in 
the model. These distributions represent the observed rate of occurrence of aircraft in each altitude 
layer and airspace class. But from Equation C-4, the encounter rate is proportional to the airspace 
density, not the cumulative occurrence of aircraft, in the local airspace. For example, the greatest 
observed cumulative occurrence (total flight time) of aircraft is found in the airspace defined as 
"other" in the model (corresponding to class E and G airspace), but this airspace also occupies the 
largest volume. Furthermore, the model assumes that the exposure time (te), or the duration of 
time that the own aircraft operates in each airspace, is equally divided amongst each airspace class 
and layer. Therefore, the mean NMAC probability over all airspace classes and altitude layers that 
considers these factors a posteriori is defined by 

DI          i       \     V" v><          i              i \r>(     i  \       \      ^^(nmac | enc,a2,/j)piVj4;       !n „, r(nmac | enc) = ^ "(nmac | enc, Oj. li)P{au /, | enc) = =~T\ >     (^"9) 
T,i(HVit(e' 

where i denotes each airspace class and altitude layer combination. The term P(a,i,li | enc) is the 
proportion of encounters expected in each altitude layer and airspace class combination. 

If one knows pi, Vi, and te a priori, then the altitude and airspace class distributions can be modified 
to reflect this knowledge before sampling from the model. Then, the mean NMAC probability 
estimate is simply the NMAC probability for all encounters. This sampling procedure may be 
useful when the aircraft of interest is expected to operate in a specific airspace class or altitude 
layer. For example, some aircraft types may only operate in the first altitude band (500-1200 ft 
AGL), thus simulating encounters in the other layers wastes computation because they will not be 
considered in the final estimate. If little is known about the expected operating environment, then 
an objective (uniform) assumption regarding the airspace class and altitude layer may be suitable. 
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APPENDIX D 
NETWORK STRUCTURE CANDIDATES 

This section describes the network candidates that were considered for the littoral models. The 
optimal network was chosen by maximizing the Bayesian network score (Equation E-7). The 
optimal scores are denoted and the optimal CONUS models are shown for reference. The same 
set of networks that was considered for the CONUS models was considered for the littoral models. 
The candidate model structures were selected based on expert knowledge, previous encounter model 
structures, and automated search techniques. 

D.l     UNCORRELATED CANDIDATES 

D.l.l     Initial Network Candidates 

'1) Edges: 13, Parameters: 7167 (2) Edges:  10, Parameters: 1791 

Model Score Model Score 

Littoral 
CONUS 

-38156685 

-967535636 

Littoral       -38596563 
CONUS    -975857519 
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(3) Edges: 12, Parameters: 7083 

Model Score 

Littoral 
CONUS 

-38187483 

-968008451 

(4) Edges: 14, Parameters: 9855 

Model Score 

Littoral       -38090950 
CONUS    -966680903 

(5) Edges: 10, Parameters: 1775 

Model Score 

Littoral       -38475107 
CONUS    -974521777 

(6) Edges: 15, Parameters: 31,359 

Model Score 

Littoral (Best)       -37927856 
CONUS (Best)    -961629997 
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(8) Edges: 0, Parameters: 29 

Model Score 

(7) Edges: 14, Parameters: 9855 

Littoral 
CONUS 

-39924524 

-1013111341 

Model Score 

Littoral 
CONUS 

-38091977 
-966681414 
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D.1.2    Transition Network Candidates 

(1) Edges: 11, Parameters: 9296 

Model Score 

Littoral       -1113146 
CONUS    -29392892 

(2) Edges: 14, Parameters: 74,368 

Model Score 

Littoral       -1173002 
CONUS    -29213939 
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(3) Edges: 12, Parameters: 42,784 

Model Score 

Littoral       -1136239 
CONUS    -29251530 

(4) Edges: 12, Parameters: 18,592 

Mod Score 

Littoral -1122499 
CONUS (Best)    -29173494 
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(5) Edges: 10, Parameters: 11,312 

Model Score 

Littoral       -1110877 
CONUS    -29391204 

(6) Edges: 21, Parameters: 7,651,840 

Model Score 
Littoral       -1370034 
CONUS    -29790622 
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(7) Edges: 10, Parameters: 5936 

K'lodel Score 

Littoral (Best)      -1106490 
CONUS -29464867 

v(t) h(t) m v(t + 1) h{t+ 1) 4>{t + i) 

(8) Edges: 0, Parameters: 16 

Mode Score 

Littoral       -15439646 
CONUS    -407569877 

:,:; 



D.2    CORRELATED CANDIDATES 

D.2.1     Initial Network Candidates 

A L X a hmd vmd 

1>\ '•l 

AC\ 

n C] 

fa V2 

AC2 

f'2 c2 

(1) Edges: 0, Parameters: 83 

Model Sc core 

Littoral       -682309 
CONUS    -7225886 

•>l 



(2) Edges: 27, Parameters: 5203 

Model Score 

Littoral       -646047 
CONUS    -6746733 

.-,:, 



(3) Edges: 29, Parameters: 6877 

Model Score 

Littoral       -645892 
CONUS    -6743530 
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(4) Fxlges: 25, Parameters: 1865 

Model Score 

Littoral       -648805 
CONUS    -6783862 
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(5) Edges: 41, Parameters: 24,751 

Model Score 

Littoral       -648264 
CONUS    -6726995 
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(6) Edges: 37, Parameters:  17,358 

Model Score 

Littoral       -643437 (Best) 
CONUS    -6700437 (Best) 
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D.2.2    Transition Network Candidates 

AC\ 

i>i(t) hy(t) 

VM' + i) h:{t + l) 

AC2 

Mt) ii2(t) 

Mt + K h2(t + r 

'!) Edges: 0, Parameters: 32 

Model Score 

Littoral       -8396812 
CONUS    -90986115 

AC\ AC2 

Mt) MO &W M*) 

i ' 

&(t + i) fci(t+ 1) &(< + !) M* + 1) 

(2) Edges: 4, Parameters: 288 

Model Score 

Littoral (Best)      -920981 
CONUS -9826752 

60 



AC I 

h(t) 0l(«) 

r r 

hi{t+l)- •</>,(* + !) 

4C2 

M*) &(*) 

1 

/i2(^ + l)- •&(t + l) 

(3) Edges: 6, Parameters: 1440 

Model Score 

Littoral       -925529 
CONUS    -9828653 

ACl AC2 

hi(t) Mt) L h*(t) tk(t) 

/     x^"^ ^ . \   i ^» i 

h^t+i)- •^i(* + i) h2{t+ 1)- *Mt + i) 

(4) Edges: 11, Parameters: 10,080 

Model Score 

Littoral       -945592 
CONUS    -9834130 

(5) Edges: 10, Parameters: 7200 

Model Score 

Littoral -938287 
CONUS (Best)    -9822334 
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APPENDIX E 
BAYESIAN NETWORKS 

This appendix briefly reviews Bayesian networks. Further discussion of Bayesian networks may be 
found elsewhere [32-34]. 

E.l     DEFINITION 

A Bayesian network is a graphical representation of a multivariate probability distribution over 
variables X = X\,..., Xn. In particular, a Bayesian network is a directed acyclic graph G whose 
nodes correspond to variables and edges correspond to probabilistic dependencies between them. 
Associated with each variable Xi is a conditional probability distribution P(xi | m), where 7Tj 
denotes an instantiation of the parents of Xi in the graph. The probability of an instantiation 
of the variables is specified directly by the conditional probability distributions in the Bayesian 
network: 

n 

P(x) = P(xi,... ,xn) = I] Pfa I *«) • (E-l) 

E.2    SAMPLING 

It is rather straightforward to sample from a multivariate distribution represented by a Bayesian 
network. The first step is to produce a topological sort of the nodes in the network. A topological 
sort orders the nodes in a Bayesian network such that if a node Xt comes before Xj there does not 
exist a directed path from Xj to Xi. Every Bayesian network has at least one topological sort, but 
there may be many. Efficient algorithms exist for finding a valid topological sort [35]. 

To produce a sample from the joint distribution represented by a Bayesian network, we simply 
iterate through a topologically sorted sequence of the variables and sample from their conditional 
probability distributions. The topological sort ensures that when sampling from each conditional 
probability distribution the necessary parents have been instantiated. 

E.3     PARAMETER LEARNING 

The parameters 9 of a Bayesian network determine the associated conditional probability distri- 
butions. Given some fixed network structure G, we can learn these parameters from data. In this 
appendix, we assume that the variables are discrete. 

Before discussing how to learn the parameters of a Bayesian network, it is necessary to introduce 
some notation. Let rj represent the number of instantiations of Xz and ql represent the number of 
instantiations of the parents of Xi. If Xi has no parents, then <ft = 1. The jth instantiation of the 
parents of Xi is denoted 7T;J . 
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There are YA=I 
ri9i parameters in a Bayesian network. Each parameter is written 8^ and deter- 

mines P(Xi = k | 7Ty), i.e., 
p{xl = k \m) = &ijk- 

Although there are ]C?=iri9t parameters, only YA=iiri ~ l)^t are independent. 

Computing the posterior p(9 \ D, G) involves specifying a prior p{9 | G) and applying Bayes1 rule 

P(fl | g, G)p(6 | G) _     P(£>|g,G)p(g|G) 
P(*|D'G)-"      P(£ | G)      "-/P(P|^,G)^|G)d^ (E"2) 

If Nijk is the count of X% = fc given 7ry in the data Z?, then the probability of the data given the 
parameters 9 is 

p(° I *) - ft ft ft <f • (E-3) 
1=1^=1fc=i 

Let 0jj = (9tj\,.. .,9ijrj). Since 9^ is independent of #jy when ij ^ i'j', the prior probability of 
the parameters assuming a fixed structure G is 

p(0\G) = f[l[p(9lJ\G). (E-4) 

The density p(9ij \ G) is a distribution over relative frequencies. Under some very weak assumptions, 
it is possible to prove that p(9ij | G) is Dirichlet (see [34], Section 6.2.3). Hence, 

I   0 otherwise 

where aiiji,• • •,Oijn are the parameters of the Dirichlet distribution and o^o = YJk=\aijk- For 
the prior to be objective (or noninformative), the parameters a^ must be identical for all k. 
Different objective priors have been used in the literature. Cooper and Herskovits [28] use oiijk = 1 • 
Heckerman, Geiger, and Chickering [36] use and justify a^ = l/(riqi). 

It is possible to show that p(9ij \ D, G) is Dirichlet with parameters ay* + N^k,..., Qy/t + N^k. 
Hence, 

0 otherwise 

where Ny = £j>=1 ##*• 

Sampling from a Bayesian network with G known, 0 unknown, and D observed involves assigning 
k to Xi with probability 

P(X, = k | Try, D,G)= f 9ljkP(9ljk | L>, G) dfy* = Qyfc + N^ (E_5) 
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E.4    STRUCTURE LEARNING 

Finding the most likely structure G that generated a set of data D. The objective is to find the 
most likely graph given data. By Bayes' rule, 

P(G | D) oc P{G)P(D | G) = P{G) f P{D \ 0, G)p{0 | G) 6.6 . (E-6) 

The previous section explains how to compute the likelihood P(D \ 9,G) and the prior p(9 \ G). 
Cooper and Herskovits [28] show how to evaluate the integral above, resulting in 

where ATy = J2k=i ^ijk- Heckerman, Geiger, and Chickering [36] suggest priors over graphs, but 
it is not uncommon in the literature to assume a uniform prior. For numerical convenience, most 
Bayesian network learning packages calculate and report log P(G \ D) + K, where K is a constant 
independent of G. This quantity is often called the Bayesian score and may be used for structure 
comparison and search. 
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